#940. [ybt]1285

[ybt]1285

【题目描述】

一个数的序列bib_i,当b1<b2<...<bSb_1<b_2<...<b_S的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,...,aN)(a1,a2,...,aN),我们可以得到一些上升的子序列(ai1,ai2,...,aiK)(a_i1,a_i2,...,a_iK),这里1<=i1<i2<...<iK<=N1<=i_1<i_2<...<i_K<=N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中和最大为18,为子序列(1,3,5,9)的和。

你的任务,就是对于给定的序列,求出最大上升子序列和。注意,最长的上升子序列的和不一定是最大的,比如序列(100,1,2,3)的最大上升子序列和为100,而最长上升子序列为(1,2,3)。

【输入】

输入的第一行是序列的长度N(1≤N≤1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。

【输出】

最大上升子序列和。

【输入样例】

7
1 7 3 5 9 4 8

【输出样例】

18

【来源】

一本通在线评测